438 research outputs found

    Energetic particle fluxes in the exterior cusp and the high-latitude dayside magnetosphere: statistical results from the Cluster/RAPID instrument

    Get PDF
    In this paper we study the fluxes of energetic protons (30–4000 keV) and electrons (20–400 keV) in the exterior cusp and in the adjacent high-latitude dayside plasma sheet (HLPS) with the Cluster/RAPID instrument. Using two sample orbits we demonstrate that the Cluster observations at high latitudes can be dramatically different because the satellite orbit traverses different plasma regions for different external conditions. We make a statistical study of energetic particles in the exterior cusp and HLPS by analysing all outbound Cluster dayside passes in February and March, 2002 and 2003. The average particle fluxes in HLPS are roughly three (protons) or ten (electrons) times larger than in the exterior cusp. This is also true on those Cluster orbits where both regions are visited within a short time interval. Moreover, the total electron fluxes, as well as proton fluxes above some 100 keV, in these two regions correlate with each other. This is true even for fluxes in every energy channel when considered separately. The spectral indices of electron and proton fluxes are the same in the two regions. We also examine the possible dependence of particle fluxes at different energies on the external (solar wind and IMF) and internal (geomagnetic) conditions. The energetic proton fluxes (but not electron fluxes) in the cusp behave differently at low and high energies. At low energies (<70 keV), the fluxes increase strongly with the magnitude of IMF <i>B<sub>y</sub></i>. Instead, at higher energies the proton fluxes in the cusp depend on substorm/geomagnetic activity. In HLPS proton fluxes, irrespective of energy, depend strongly on the <i>K<sub>p</sub></i> and AE indices. The electron fluxes in HLPS depend both on the <<i>K<sub>p</sub></i> index and the solar wind speed. In the cusp the electron fluxes mainly depend on the solar wind speed, and are higher for northward than southward IMF. These results give strong evidence in favour of the idea that the high-latitude dayside plasma sheet is the main source of energetic particles in the exterior cusp. Energetic particles can reach HLPS from the near-Earth tail. The closed field lines of HLPS act as storage for these particles. Direct diffusion (for electrons and high-energy protons) and magnetic reconnection in the high-latitude magnetopause near HLPS (for low energy protons) control the number of particles released into the exterior cusp. Note that this explanation, in contrast to other suggested theories, works both for the energetic protons and electrons in the exterior cusp. <br><br><b>Keywords.</b> Magnetospheric physics (Magnetopause, cusp and boundary layers; Solar wind-magnetosphere interactions) – Space plasma physics (magnetic reconnection

    Productivity of Stump Harvesting for Fuel

    Get PDF
    The productivity of harvesting stump and root wood was studied in Norway spruce (Picea abies) stands. The objective was to create productivity models (m3/E0h) for stump wood extraction, stump wood forwarding, and site preparation, in addition to identifying work phases and improvement opportunities in the extraction and forwarding chain. Productivity models were based on time studies with professional operators. The independent variables in stump wood extraction were stump diameter (cm) and the number of stumps per hectare. For forwarding, the independent variables were volume of stump wood removed (m3/ha) and forwarding distance (m). When removing 350 stumps per ha with an average diameter of 40 cm, productivity was estimated at 7.9 m3/E0h. Increasing the number of stumps removed from 350 to 800 stumps per ha, increased productivity to 10.8 m3/E0h. Forwarding productivity was 7.8 m3/E0hwithaforwardingdistanceof250mandaload size of 7.0 m3 when removing 60 m3 of stumps per ha

    Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate

    Get PDF
    We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere

    RED-PL, a Method for Deriving Product Requirements from a Product Line Requirements Model

    No full text
    International audienceSoftware product lines (SPL) modeling has proven to be an effective approach to reuse in software development. Several variability approaches were developed to plan requirements reuse, but only little of them actually address the issue of deriving product requirements. Indeed, while the modeling approaches sell on requirements reuse, the associated derivation techniques actually focus on deriving and reusing technical product data.This paper presents a method that intends to support requirements derivation.Its underlying principle is to take advantage of approaches made for reuse PL requirements and to complete them by a requirements development process by reuse for single products. The proposed approach matches users' product requirements with PL requirements models and derives a collection ofrequirements that is (i) consistent, and (ii) optimal with respect to users' priorities and company's constraints. The proposed methodological process was validated in an industrial setting by considering the requirement engineering phase of a product line of blood analyzers

    Dynamics and Kinetic Roughening of Interfaces in Two-Dimensional Forced Wetting

    Full text link
    We consider the dynamics and kinetic roughening of wetting fronts in the case of forced wetting driven by a constant mass flux into a 2D disordered medium. We employ a coarse-grained phase field model with local conservation of density, which has been developed earlier for spontaneous imbibition driven by a capillary forces. The forced flow creates interfaces that propagate at a constant average velocity. We first derive a linearized equation of motion for the interface fluctuations using projection methods. From this we extract a time-independent crossover length ξ×\xi_\times, which separates two regimes of dissipative behavior and governs the kinetic roughening of the interfaces by giving an upper cutoff for the extent of the fluctuations. By numerically integrating the phase field model, we find that the interfaces are superrough with a roughness exponent of χ=1.35±0.05\chi = 1.35 \pm 0.05, a growth exponent of β=0.50±0.02\beta = 0.50 \pm 0.02, and ξ×v1/2\xi_\times \sim v^{-1/2} as a function of the velocity. These results are in good agreement with recent experiments on Hele-Shaw cells. We also make a direct numerical comparison between the solutions of the full phase field model and the corresponding linearized interface equation. Good agreement is found in spatial correlations, while the temporal correlations in the two models are somewhat different.Comment: 9 pages, 4 figures, submitted to Eur.Phys.J.

    Correction to : Health effects of nutrients and environmental pollutants in Baltic herring and salmon : a quantitative benefit-risk assessment

    Get PDF
    It was highlighted that the original article [1] contained a formatting error in the equations

    Ympäristöterveysriskien torjunta osana kestävää kehitystä

    Get PDF

    A Comparison of Two-Level and Multi-level Modelling for Cloud-Based Applications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21151-0_2The Cloud Modelling Framework (CloudMF) is an approach to apply model-driven engineering principles to the specification and execution of cloud-based applications. It comprises a domain-specific language to model the deployment topology of multi-cloud applications, along with a models@run-time environment to facilitate reasoning and adaptation of these applications at run-time. This paper reports on some challenges encountered during the design of CloudMF, related to the adoption of the two-level modelling approach and especially the type-instance pattern. Moreover, it proposes the adoption of an alternative, multi-level modelling approach to tackle these challenges, and provides a set of criteria to compare both approaches.The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement numbers 317715 (PaaSage), 318392 (Broker@Cloud), and 611125 (MONDO), the Spanish Ministry under project Go Lite (TIN2011-24139), and the Madrid Region under project SICOMORO (S2013/ICE-3006)

    Motion of flux transfer events: a test of the Cooling model

    Get PDF
    The simple model of reconnected field line motion developed by Cooling et al. (2001) has been used in several recent case studies to explain the motion of flux transfer events across the magnetopause. We examine 213 FTEs observed by all four Cluster spacecraft under a variety of IMF conditions between November 2002 and June 2003, when the spacecraft tetrahedron separation was ~5000 km. Observed velocities were calculated from multi-spacecraft timing analysis, and compared with the velocities predicted by the Cooling model in order to check the validity of the model. After excluding three categories of FTEs (events with poorly defined velocities, a significant velocity component out of the magnetopause surface, or a scale size of less than 5000 km), we were left with a sample of 118 events. 78% of these events were consistent in both direction of motion and speed with one of the two model de Hoffmann-Teller (dHT) velocities calculated from the Cooling model (to within 30° and a factor of two in the speed). We also examined the plasma signatures of several magnetosheath FTEs; the electron signatures confirm the hemisphere of connection indicated by the model in most cases. This indicates that although the model is a simple one, it is a useful tool for identifying the source regions of FTEs

    Anomalous Roughening in Experiments of Interfaces in Hele-Shaw Flows with Strong Quenched Disorder

    Get PDF
    We report experimental evidences of anomalous kinetic roughening in the stable displacement of an oil-air interface in a Hele-Shaw cell with strong quenched disorder. The disorder consists on a random modulation of the gap spacing transverse to the growth direction (tracks). We have performed experiments varying average interface velocity and gap spacing, and measured the scaling exponents. We have obtained beta=0.50, beta*=0.25, alpha=1.0, alpha_l=0.5, and z=2. When there is no fluid injection, the interface is driven solely by capillary forces, and a higher value of beta around beta=0.65 is measured. The presence of multiscaling and the particular morphology of the interfaces, characterized by high slopes that follow a L\'evy distribution, confirms the existence of anomalous scaling. From a detailed study of the motion of the oil--air interface we show that the anomaly is a consequence of different local velocities over tracks plus the coupling in the motion between neighboring tracks. The anomaly disappears at high interface velocities, weak capillary forces, or when the disorder is not sufficiently persistent in the growth direction. We have also observed the absence of scaling when the disorder is very strong or when a regular modulation of the gap spacing is introduced.Comment: 14 pages, 17 figure
    corecore